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The fictitious absorption method [1] is developed to solve convolution-type integral equations, specified in a system of sections 
and generated by dynamic problems of the excitation of a piezoelectric crystal by a system of strip electrodes. Compared with 
other approaches this method enables solutions to be constructed with high accuracy simultaneously in all the regions in which 
the integral equations are specified, including the boundary, and can be used at any frequencies. © 1999 Elsevier Science Ltd. 
All fights reserved. 

Dynamic problems of analysing multielectrode structures by the method of integral transformations 
[1, 2] reduce to the convolution-type integral equations 

N 
~ ,Kqr (x )=  fm, X E~dm, ~'2m =[a2m_l,a2m] (1) 
r=l 

a2r 
Kqrfx)  = I k(x - ~)qr(~)d~, kfx)  = ~ 5 Kfct)e-iaXdct 

a2r_ I ~"  O 

Here and everywhere below, unless otherwise stated, the subscript m takes values of 1, 2 . . . . .  N (N 
is the number of electrodes on the surface of the piezo-electric crystal). 

The functions qm and fro have carriers in the interval ~m. The contour is situated in accordance with 
the rules which ensure that the radiation conditions at infinity are satisfied [3]. Assuming system (1) to 
be uniquely solvable in Lp, where p > 1 for any twice continuously differentiable function fm [2, 4], we 
will assume that the function K(ct) possesses the following properties, characteristic of a wide class of 
dynamic mixed problems in the theory of elasticity: 

1. it is an even function of the parameter a, and meromorphic in the complex plane; 
2. along the real axis there can be a finite number of real zeros and poles Zk, ,ok (k = 1, 2 . . . . .  No) 

and a denumerable set of complex zeros and poles Zk, Pk (k = No + 1 . . . . .  ~)  from the point of 
condensation in sectors of small angles containing the imaginary axis 

3. K ( c t ) = c l a l  -I [l+O(a-l)], lal--->**. 

Without loss of generality we will construct solutions qm(x) of Eqs (1) with right-hand side fm = 
Ame"iqX(hm, 11 = const), and assuming that the constant c, characterizing the behaviour of K at infinity, 
is equal to unity. 

By the fictitious-absorption method the function K(a)  can be represented in the form of a product 
K(a) = S(a)rl(a). 

We will choose the function S(ct) = (ct 2 + BE) -t/z, B > 0 as S(ct). 
It is obvious that S(a) is a regular function on the real axis, and its asymptotic behaviour is identical 

with the behaviour of K(a) as I a I ~ ~. 
The function I-l(a) = S-l(a)K(ot) can be approximated by a rational function of the form 

= ¢., a"-z  
FIOx) ~ l o 2 _ p  ~, H(00=1+O(~-') ,  10cl-~oo (2) 

using Bernshtein or Lagrange polynomials, as was described in detail earlier [3]; s = n -No is the degree 
of the approximating polynomial. The number of zeros and poles of the function I-l(ct) depends on the 
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desired accuracy with which the approximate solution is constructed, where the first No zeros and poles 
of the function are identical with the singular points of K(~t) on the real axis. The use of this approxi- 
mation was justified earlier in [1, 3]. 

Using the fictitious-absorption method [1] we will seek a solution in the form (everywhere henceforth 
j =  1, 2 , . . . , n )  

2n 
q .  (x) = qO (x) +,0= (x), ¢0. (z) = 5". c~8(x - x ~ )  (3) 

k=l 

when the following conditions are satisfied 

a~qm(x)e±ip~Xdx 2, . ~.~ ±lp j x bu 
: 2,ckme (4) 

G 

Q°(ot) = lq° (x )emdx  
--G 

satisfy the conditions QO(+_pj) = 0 in the polar set FI(a). 
The functions q°m(X ) satisfy the conditions of the lemma, by virtue of (4), and on the basis of this we 

will introduce new unknowns tin(x) by the relations 

tm(X): l !T.(a)e_iOZdff., T.(cx)= rl(•)Q°(•) (5) 

Introducing expressions (3) into Eqs (1) and taking relations (5) into account, we arrive at the following 
system of integral equations with regular kernel in tm(X) 

N 2 . .  (6) 
Z S t r ( X ) -  gm(z), X e ~ m ;  g .  -- f .  - Z ZCtrk (X-  Xtr) 
r=l k=lr : l  

_°~- st. s(x-Dt.(D,g, s(x)=_ -1 ~s(.)e-'~'~ 
a2m-I "lg .-~ 

Theorem. Suppose t~(x) are solutions of the equations 

Sty(x) = • - ~ ,  x ¢ fl,. (7) 

Then, the integral representation of the solution of the system of integral equations (1) for fm = 
Ame - ~  is given by the relations 

= 

1 2 ,  s f . 
- =--- 5". 5'. c~ ~ j" rI- '  (a)L. (or, x~)e-'~dot + 

: ~  kflr=! [ 0  

+![l'l-'(ot)-l]e-~(z-X~)dot}, x ¢ " , n  (8)  

a2m_l k : l  

wherepj are the poles of the functions YlOz ), situated above the contour a, c ~  are unknown constants, 
to be determined, and x ~  are points which divide the intervals f ~  into equal sections 

x ~  = a2m_ I + k(a2m - a2m_ I)/(2n + 1) 

Lemma 1. Suppose the functions q°(x) ~ Lp(a2m-1, az~),p > I and have carriers in the interval ~m. 
In order that the functions 

t m ( x )  : [ rl(ct)Q 0 (ct)e-iaXda 

should have the same properties it is necessary and sufficient that the functions 
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where the constants ckr are found from the system of equations 

2n N w., ~ :f-iZjXtr Y. 2,ctrte + Lm(+Zj,Xtr)] = AmTnm(+Zj) (9) 
k- - I r= l  

where zj are the zeros of H(a), which lie above the contour ~, and the functions Lm have the form 

L,, (a, x) = ~ I s(n)tn(n) - 11r2 (a)e'~'dn (10) 

Proof. Multiply both sides of F_x t. (7) by S(rl)[H(rl) - 1 ~  nx~, and integrate with respect to the parameter 
11. Then the solution t~(x) of the system of equations (6) with right-hand side kx(x - Xkr) (kl(X) = 
k(x) -s(x)) has the form 

t'fx) = I s f n ) t n f n ) -  
O 

Using the superposition principle, and also the fact that the contribution of terms of the form Stm(X) 
when x ~ fire can be neglected compared with Stm(X) when x ~ rim [3], we obtain the general solution 
of system (6) in the following form 

1 2 n N  
t .  (x) = ,4.t~ (x) - ¢p,~ (x) - = -  E Z c~, 1 I . .  (a,  xk, )e-~'  da  - 

:1.11[ k=lr=l O 

l 2n N - . 

- ' z "  Z Zc~  J L~(a,x~,) e-suda (11) 
"~g knl  r=l a 

rltra 

The Fourier transformant of this solution has the form 

2 n  . N 

T.(a) = AmT ~ (a) - c~e + ~,ctrLm(a,x~ )+ 
= r=l 

+ Is(n)r."(,r, an (12) 

The functions Lm(cX, x) are given by relations (10). 
From condition (5) we obtain 

qO (x) = t m (x) + I ~ [l.l(a)_l _ llTm (a)e_i~da (13) 
Zg o 

Substituting expressions (11) and (12) into the last equation and taking Eqs (3) and (13) into account, 
we obtain an integral representation of the solution of system (1) in the form (8). 

Since q°m(x ) e Lp(~), p > 1 (f~ = fll ~) f~2 u . . . u f~N) and have carriers in f2m, we obtain 
T m (  +- z j )  = O. 

Hence, by (12) we obtain a linear algebraic system (9) of order 2nN unknowns Ckm. The theorem is 
proved. 

The solutions trim(X) and the corresponding Fourier transformations Trim(a) are constructed by the 
method of factorization [3] for the right-hand sides fm = Am e-i~ and are not given here. 

The integrals Lm(a ,x), LUm(a,x) in (10) and (12) are evaluated by residues after substituting the expres- 
sions for T~(ct) into them, taking into account the decrease in the integrands in the lower half-plane. 

Substituting the expressions obtained for Lm(a,x), Trim(a), t~(x) into the integral representation of the 
solution (8) we obtain, after appropriate reduction, the approximate solution of system (1) in the form 

q,,,(x,n) = A.{u~ + K-~(rl)e.-~[v~(x)- 11+ 

r = l  Zgr 
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N 2n r e -B(a2m-x) e -B(x-a2m-I) 

- - iE  E c q l  ,_.  . g ( a 2 m - X ~ ) +  Pt(xk j -a2m_l)+ 
j=~=~ Lqr~a~m - x~ ~]~(x-  a~m_~) 

+~.(a~m - xq, oam - x) + ~', (xq - a-z.,_1, x - a~.,_, )], x ~ f l  m (14) 

The unknowns Ck: are found from the linear algebraic system of order 2nN 

2n N . /aa2m 
Z Y ~ c ~ [ 4 B ~ - d e  F,(a, Oam - x ~ ) +  
~=~j=~ 

+ B,/BZ-~'-/ae/~m-' F~(-ot, x~ - Oam_ ~)1 = A, .T~(c t ) ,  ct = + z ,  (15) 

We must put s = t = 1 w h e n j  = m, s = 2 and t = 1 w h e n j  > m, and s = 1 and t = 2 w h e n j  < m in 
(14) and (15). 

We have used the following notation 

n e+ipj x 

j f i  

• , ( x ,y )  = ~ ~"=~=g'~CX)*r(Z'p.i,y) 
r=lj=l /Zr 

n 
F , ( a , D =  Z(~t+p~)-~g~(x) ,  t =  1,2 

j=l 

(t = 1 corresponds to the plus sign and t = 2 corresponds to the minus sign) 

+ 

v =~ (x) = err 4 ( B  + irl)(a2m - x) + err ~/(B- i,O)(x - a2m-~) 

n 2 n n n 
= • % (p~ - z k )  (pj - p ~ ) - ' ,  I~i = l-l(z~ - 

= k=! k=l 
kvbj k¢,i 

The Fourier transformants of the solutions qm(X, rl) have the form 

5 . .  

Q,.(o.,'q) = amT~(a)- Z Zc~[ B4B "~--F6e~2m * 
k=l j=l  

• F, (a,  oam - x~)  + Bq~-Fd-/a • ~ ' - '  ~ (--ct, xkj - Oam_l )] } (16) 

Remarks. 1. The solution of integral equation (1) has been obtained assuming c = 1, i.e. apart from the factor 
c -I, where c is a constant characterizing the behaviour of the function K(et) at infinity. 

2. The physically realizable electrical boundary conditions in mixed problems of acousto-electronics have a more 
special form:f(x) = Ym = const on each of  the N electrodes. In this case 1] = 0. For contact problems of the theory 
of  elasticity, the function f(x) describes the form of the base of the punch. 

--~rlx 3. Using the solutions q(x, ~), obtained for the right-hand side of e , it is easy to construct a solution for an 
--nix arbitrary right-hand side off(x), if we represent it by the integralf(x) = 5aF(rl)e " drl. Then q(x) = ~aq(x, rl)F(rl)d~. 

The integration contour a in these representations is chosen in such a way so as not to intersect the singularities 
of  the functions/Cl(rl). 

As an example we will consider the problem of the electrical excitation of a piezoelectric crystal layer of thickness 
h by two strip electrodes; a~n-1, az, n are the beginning and ends of  the mth electrode (m = 1, 2). We will assume 
that he surface of  the layer is free from mechanical stresses, while in the regions f/n: az,n-4 ~< x ~< a ~  the electric 
potentials fro = Am, x E ~ are specified. Outside these regions the normal components of the electric induction 
vectorqm(x) = O,x ft t'2,n. The lower face of the layer is rigidly clamped, metallized and short-circuited. The system 
performs steady-state oscillations with frequency co. The factor e " , common for all the characteristics, is omitted. 
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Fig. 1. 

This problem can be reduced, by the method of integral transformations [1], to a system of integral equations 
(1). For XZ-cut piezoelectric crystals of class 6 mm and polarized along the z axis of the piezoelectric ceramic (z 
is the normal to the surface of the medium) the integrand kernel K(ct) possesses the above-mentioned properties 
1-3, and was constructed earlier in [5] for different models of the media, namely, a layer, a packet of layers and 
a multilayered half-space. In this case, the unknown charge density (the electric induction qm) is found from (14), 
while the total charges under the electrodes are connected with the Fourier transforms Qm(a, rl), described by 
(16), by the relations 

a2m 
Gm= I qm(x)dx=Qm(0"0) 

a2m-I  

Figure 1 shows graphs of the real and imaginary parts of the amplitude of the electric induction q(x) = q2(x) = 
--ql(x), referred to c,~,/L (L = 101° and has the dimensions of electric field) as a function of the distance between 
the electrodes for f2 = 2.6 andA1 = -A2 = 1 for U, TC-19 piezoelectric ceramics (f22 = p(o2c~h 2 is the dimensionless 
frequency of the oscillations, p is the density, c44 is the elasticity modulus of the layer, and the parametersAl = 1 
andA2 = -1 correspond to unit electric excitation of the electrodes, here in antiphase). For convenience the graphics 
of the electric induction are superimposed, apart from the dependence on the value of the separation of the 
electrodes. The value of the dimensionless parameter 2b determines the distance between the electrodes, normalized 
to the layer thickness. The continuous curve corresponds to b = 3, the dashed curve corresponds to b = 1 and the 
dash--dot curve corresponds to b = 0.25. The width of both electrodes, normalized to the layer thickness, is equal 
to 10. 

As the distance between the electrode is reduced, the mutual influence of the electrodes increases. When the 
electrodes are very close, when A] = Az = 1, the electric induction distribution is practically degenerate in the 
induction distribution under one electrode of double the width, if we eliminate the effect of the singularities at 
internal points. When the dimensions of the electrodes are increased compared with the distance between them, 
the mutual influence of the electrodes is reduced. 
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